Using AI to control energy for indoor agriculture
30 September 2024
Published online 30 November 2017
Conflict over Nile water is rooted in population growth and poor soil productivity.
Ethiopia’s decision is consistent with its long-term plan to utilize its hydropower potential to generate electricity which it can export to neighboring countries in exchange for badly needed income.
Africa’s population problem is worse for some countries than for others. The combined population of Ethiopia, Sudan, and Egypt has doubled in the last 30 years or so. Current rates of population growth range from around 1.5% to 3.0% depending on the country and data source. It would be safe to predict that the population of the three countries will approach 400 million by 2050.
This population growth is at the root cause of the Nile water conflict.
Along with the greater demand for water, the rate of fertilizer application and the introduction of agricultural technologies in Africa is the lowest compared to any other continent, and thus the productivity of African soils is also the lowest compared to other regions.2
In fact, land fertility in some parts of Africa is being depleted through unsustainable cultivation practices. Aside from Egypt where application of fertilizers is relatively high by regional standards, fertilizer use in Sudan and Ethiopia is among the lowest.
How does fertilizer use relate to what appears to be a conflict on water? The amount of crop produced per unit volume of water is to a large degree dependent on the rate of application of fertilizers and the type of seeds used. In order to expand agricultural production in Africa, there are two possible routes: horizontal expansion using more land and more water, or vertical expansion using the same land and water volume, but producing more crops aided by fertilizers, better seeds, and more efficient water use technologies.
The first route usually leads to conflicts over land or water (or both). The second route can help countries avoid these conflicts.
The slow rate of adoption of agricultural technology combined with the rapid growth in population would significantly reduce crop production per capita and in turn the associated GDP per capita. Under such difficult regional conditions, countries would naturally try to achieve more growth by maximizing their share of the limited water resource.
However, this comes at the expense of other countries. Because of this, the GERD issue seems only to be a symptom of a more serious malaise that I call the African ‘fertility’ challenge. In other words, although the emerging conflict over the Nile water appears at the surface to be caused by the introduction of GERD, it is indeed entrenched in more serious problems related to poor population management and a fragile agricultural infrastructure.
In order to effectively address the conflict on the Nile water, the key is not to focus on how we fill a reservoir behind a dam here or there, but instead to address the root cause of the problem by finding ways to curb population growth, and nurture soil fertility across the Nile basin.
Here, I propose five elements that are necessary to include in order to achieve sustainable agreement on sharing water between Ethiopia, Egypt, and Sudan:
Elfatih A B Eltahir is a Breene M Kerr Professor of Hydrology and Climate at the Massachusetts Institute of Technology, Boston, USA.
doi:10.1038/nmiddleeast.2017.165
Stay connected: